Work done by a force \mathbf{F} on a be displacement of body. Given that under a force displaced from position vector $\mathbf{r}_1 = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}})$ $\mathbf{r}_2 = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ m. Find the work done by this \mathbf{j} Solution The body is displaced from \mathbf{r}_1 to \mathbf{r}_2 . There $\mathbf{s} = \mathbf{r}_2 - \mathbf{r}_1 = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) - (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}})$

Now, work done by the force is $W = \mathbf{F} \cdot \mathbf{s}$

$$= (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (-\hat{\mathbf{i}})$$
$$= (2)(-1) + (3)(-2) \cdot (-2)$$